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We study the question of optimal observation laws which ensure, to a specified 
accuracy, the determination of the unobservable coordinates. The conditions 
obtained for the solvability of the problems posed are stated in terms of the co- 

efficients of the equations. The paper relates closely to [l, 21. Another approach 

to an optimal observation problem under random perturbations occurs in [3, 43. 

1. Let us assume that the state of an object at an instant t is defined by the phase 
coordinate vector J: (t) czz R,, where R R denotes an n-dimensional Euclidean space, 
and the function x: (t),the solution of the system of ordinary differential equations 

z (t) = As (t) + f (Q, 5 (0) = xg (0 < t < T) (1.1) 
The vector y (t) available for observation is such that 

dy (f) = h (t) Ht (t) dt -{- a dF, (t), y (0) :: 0 (1.2) 

We invariably assume the fulfillment of the following constraints regarding the coeffic- 

ients of Eqs. (1. l), (1.2). The matrix A of dimension n >: IZ with constant elements 
and the deterministic measurable bounded function f (t) E K n are specified. The ran- 

dom variable IC (0) has a nondegenerate Gaussian distribution with the parameters 

m, = Mz (O), D, -: M (x0 - m,) (.x0 - m,) 

Here the prime is the sign of transposition, &1 is the mean, and the matrixD,is positive 
definite in view of the nondegeneracy of the distribution of 5 (0) .The random Wiener 
process E (t) is assumed independent of x (O), the matrix 5 is nonsingular, and the de- 

terministic function h (t) is scalar. The dimension of the observed quantity y (t) may 
be arbitrary (from one to n). However, for convenience in what follows we take y (t)E 
E R,, the dimension of the constant matrices I-I and o is n X n and, moreover, 
the matrix o is nonsingular. 

The last requirement does not restrict generality. Indeed, if an i-dimensional quan- 

tity !&(t) is available for observation, i.e., Eqs. (1.2) have the form 

&/, (r) = h(t) Hix (t) dt -1 si “ji (t), vi (0) = u 

then we should consider the new process I = (i;(d), TV), where the Wiener process 
q (1) E ‘,,_i with independent components is independent of &(t) and of r(B), and we 
should introduce new matrices H and s in the following way. The first i rows of matrix 
H coincide with the corresponding i rows of matrix Hi, while the rest of the rows equal 
zero; the matrix si occurs in the upper left corner of the matrix 5 further, the elements 
Tjj=l for/ =i+l, . . . . n, and the other elements of matrix 3 equal zero. 
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Control by the observation process is effeckxl by means of choosing the scalar function 
iz (t}. By 4 we denote a nonzero vector from I{,, and we introduce into consideration 
the linear combination y’ 2: (1’). A s a result of carrying out the observations the error in 

the determination of q’ x f?‘) must be no larger than a specified fixed number R :‘-. 0. 

To be precise, the inequality 

cl’ 171 (X (T) - m (T)) (z (T) - tn (T))‘q -= q’ u (7) q $2 a (l.3) 

must hold, where 11~ (Tf is the conditional mean of vector x (Tf under the conditions 
$/ (8) (0 < S S T), while the variance matrix D (tf of the a posterior i distribution 
is given by the relations [I] 

I)’ (t) = Ar) (8) _i- 1) (t) A’ - D (l)H’ (o&)-1 Hz, (t) y (t) 

y @f 2 11% (tj7 fl (0) = 2 f), (a < t -$ T) (1 A) 

Sometimes, in order to stress the dependence of the solution of problem (1 l 4) on the 

parameters defining it, it will be noted by the symbolU {t, L),, y) *Depending on the 

requirements imposed on the function h (t), various formulations of the optimization 
problem for the observation process are possible [I], some of which are studied below, 

2, Problem 1. Find a nonnegative square-integrable function 11 (1) which min- 
imizes the integral 7‘ 

I (_r) X. i’ 7;‘(i) dl. p.q 
f-1 

and is such that the function L) (y’, D,,.yf satisfies the estimate (1.3). Here the fixed 
constant 2’ < 00. 

Theorem 2.1. For the solvability of Problem 1 with any number c( > 0, vector 
q 5: R,, and positive-definite matrix L1,, it is necessary and sufficient that the rank of 

the matrix 

be complete (i, e. , equal to the number II ( the dimension of system (1.1)). In formula 

fz. 2) the term A’” denotes the JI th power of matrix A. 
We preface the proof of Theorem 2.1 with an auxiliary lemma. We say that a funct- 

ion y (t) > 0 is admissible if J (17) < co and the matrix n (?‘, u,,\7) satisfies relation 

(1.3). 
Lemma 8.1. Let an admissible function Tl It} exist. Then there also exists an 

optimal fu~ct~5n solving Problem 1. 
The proof of Lemma 2. J is essentially very similar to the proof of the analogous ass- 

ertion in the linear time-optimal problem ([S], Chap, 3). The assertion of Lemma 2.1 
is obvious for the case when rhe number of admissible functions is finite. We now intro- 
duce into consideration the sequenceyi( t) (i = 1, 2. . . .) of admissible functions such 

that lirni _.J (7.) 1 .In = iIll ./ [*f) (2.:‘) 

where the “infimum” in the right hand side of (2.3) is computed over tiie set of all ad- 
missible functions, It is clear that the sequence y&d) belongs to some sphere in the Hil- 
bert space of scalar functions on the interval 10, TI and tberefore is weakly compact 
([6], p.212). For simplicity of writing we take it that the sequence yc( 1) itself converges 
weakly to a function y,(r). Ilence, on the basis of [6] (p. 217) and of equality (2.3), 



Optimal control by certain observation processes 169 

we conclude that JoJo) < J,. Furthermore, by a verbatim repetition of the arguments 

in [5] (pp.143-145), we obtain thaty,(t) >, U (0 < t < l’).Hence, to prove the optimal- 

ity of the function v,,(t) it suffices to show that the matrix .u( I’, D,, yO) satisfies inequality 

(1.3). However. this follows immediately from the estimates 

from the weak convergence of sequence \‘i( t) , and from the formula [l] 
T 

I'(?‘) my 3 (T) 0,' + I' T(I) z'(t)II'(Glj')-l Hz (t)Jt 
I 
-' z’(T) 

h 

(2.4) 

in which 11 ,-I is the inverse of matrix fi,,, and z(t) is the fundamental solution of the 

system of Eqs. (l.l), equal to 

z (t) -= cxp i :I ,(,) 

Lemma 2.1 is proved. 

Proof of Theorem 2.1. Sufficiency. Let us show that an admissible func- 

tion y (t) exists when the hypotheses of Theorem 2.1 are fulfilled. First of all we note 

that if 
q’z (T) I&z’ (1’) q s a 

then Theorem 3.1 is already proved by virtue of formula (2.4), since in this case we 

can take y (t) 3 0 as the admissible function. Therefore, in what follows we assume 

that 
q’z (T) D, z’ (T) q > a (2.5) 

Further, in view of Eq. (1.4) and of the positive definiteness of matrix Dait is not diff- 

icult to establish the positive definiteness of the matrix D (t) (0 < t ,( 7’) by using 

relation (2.4). 

Suppose that the function y (t) in Eq. (1.4) is equal to a nonnegative constant e for 

all 0 << t < T. We set 

cp (E) = q’D (T, Do, 8) q (2.6) 

On the basis of (2.4) - (2.6) we have 

cp (0) >, cJI (2.7) 

Therefore, to prove the existence of an admissible function it is enough to establish the 

continuity of (r (E) and the relation 

lim,,, ‘p (F) = 0 (2.8) 
The rank of matrix (2.2) equals n and therefore the vector-valued functions which 

are the columns of the matrix z’ (t) Ii’ (o/)-l are linearly independent on the interval 

0 < t < T(see [3], Sect,. 19). Hence, the matrix 

Z’ (T)-l i a’ (t) H’ (sj’)-lHz (2) dtz (T)-’ (2.n) 
0 

is positive definite. Consequently, there exists a nonsingular real matrix Q which sim- 

ultaneously reduces matrix (2.9) to the unit matrix and the matrix 

z’ (T)-l D,-’ z (T)-l (2.10) 

to diagonal form. Therefore, denoting by 3Li the eigenvalues of matrix (2.10). positive 

in view of the positive definiteness of matrix (2. lo), we obtain on the basis of (2.4), 

(2.6) that the function cp (E) can be represented in the form 
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Here the pi denote the diagonal elements of the matrix Qqq’Q-l.Hence follow the 

continuity of the function cp (E) and the validicy of the limit relation (2.8). By the same 
token the sufficiency of the requirements of Theorem 2.1 has been established. 

Necessity. Let us assume the contrary, i. e., that the rank of matrix (2.2) is equal 
to m ( n. Then we can find a nonzero vector Y1 which is orthogonal to all the columns 
of matrix (2.2). Therefore (see [3], Sect. 19). tbe function 

0-l Nz (t) q1 = G-~ Ei clip (At) q1 zz 0 O<t<T (2Al) 

We now fix a certain number a > 0 and a positive definite matrix D, and we define 

a vector p by the equality 
fJ = z) (T)-1 D,-1 CJ1& 

where E is some constant. Let us select this constant E in such a way that 

q’ z (T) D,,z (T) q ==: ql’ Do-’ ql$ > a (2.12) 

The latter is possible since ql’ql > 0 by definition. 
By the hypotheses of Theorem 2.1 Problem 1 is solvable for the number CC the vector 

4 and the matrix J?,,. In other words, there exists a y (1) such that the estimate 

cx > q’ D (I’: L)0. Y) q 

is valid. But for any positive definite matrix 1) (1’) and any vector 4 LZ R, there holds 

(2.13) 

a > rrlRS@{~, 12 /‘f/ - $1) (T, D”, “i)-‘g] 

Note that the maximum over y .:~ Zj n of the expression 

‘y’q - $2’ (q-1 Do-“z-1 (T) y 

(2.14) 

exists by virtue of the positive definiteness of the matrix z’ ( jr’)-~lf_),I-‘z~-’ (I’), is reached 
for y bum 2 (3’) D@z’ (1’) q (2.15) 

and equals the left-hand side of expression (2.12). However, on the basis of (X.11) and 
of the definition of vector 4 

for a value of y equal to the right-hand side of Eq. (2.15). Thus, by virtue of formulas 

(2.14), (2.4), (2.12) 

maxUF=ij,l I “:/Cl - !/ L, (I’, D”, y)-‘y] =:. q’z (I’) Do:’ (T) q > 3 

which is impossible because it contradicts inequality (2.14). Theorem 2.1 is completely 
proved. 

Remark. For anv nonsingular matrix o the rank of matrix (2.2) equals the rank of 
the matrix (H’, A’&‘, . . ., (_4’)“+’ Hi’). Thus, the requirements of Theorem 2.1 coincide 
with the condition for complete observability in a deterministic optimal observation 
problem (see [3], Sect. 30 - 38). 
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3, Example 1. Let the scalar equations (X.X), (1.2) have the form 

z (0 = ax (t) + f (9 

&J (t) = h (t) H 5 (t) dt + di (t), H = const # 0 (3.1) 

Then the variance D (t) is defined by the relations 

D (t) = 2a D (t\ - D2 (t) H2 y (t), D (0) =: Do (3.2~ 

and inequality (1.3) becomes the requirement D (2’) & aqe2. Hence from (3.2) and 
(5.4) it follows that the optimal functiony (t) s 0 for q2 DOezaT < a. Now let 

q2DoezaT > M. Using the method of undetermined Lagrange multipliers and the explicit 

form of solution (2.4) of Eq. (3.2) we obtain that the optimal value y. (8) is 

y. (t) 1’: fim (or -1.12 .- fj,-re-2Q’r’) (e4OT _ 1)-le2ff (‘+T)H-2 

It is also obvious that the coefficients of Eqs, (3.1) satisfy the requirements of Theorem 

2.1. 
Corollary 1. Let there be given m numbers ti such that 0 ( tr < ts < . . . , 

. . . < t, = T and na vectors Qi E R,. We are required to choose a function r (t) 2 
> 0 minimizing integral (2.1) and satisfying the estimates 

4i’D (tit DO, 7) Qi G xi (t = 1, *, ., n) 

where zi are specified positive constants. By repeating with insignificant changes the 
proof of T’neorem 2.1 we obtain that the necessary and sufficient condition for the solv- 

ability of the problem posed coincides with the necessary and sufficient condition for 

the solvability of Problem 1, established in Theorem 2.1. 

Corollary 2. Let us derive the sufficient conditions for the solvability of Problem 

1 for certain systems of form (1. l), (1.2) with variable coefficients. Precisely speaking, 

we assume that Eqs. (1. l), (1.2) have the form 

E’(t) = A (t~~(t~ f!(t)* x(O) = XCJ (O,ft,(v 

dy (t) = h (t, 11 (t) x tt) dt + 0 (t> dE tt), Y (0) = 0 (3.3) 

where the matrices A (t), R (t), o(t) with measurable bounded elements for all 
() 4 t < T satisfy the requirements in Sect.1. If, in addition, we can indicate a point 

s on the interval [0, T1 such that: 
1) the derivatives of the matrices A (t) and u-l (t) H (tfupto order n - 1 exist and 

are continuous in some neighborhood of point s; 
2) at point s the rank of the matrix 

(K, (s),..., K n(s) 
where 

K, (S) -L H’(s), (0’ (S))-I, Ki+.I (S) = ~~ -t_ A' (s) Ki (s) 

equals the number n ,then Problem 1 for system (3.3) is solvable for any number a > 
> 0, vector q E R-and nonsingular matrix D, 

The proof of Corollary 2 is completely analogous to the proof of Theorem 2.1 with 
the sole difference that this time the positive definiteness of the matrix 
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\. ,’ (t) 11’ (!) (3 (t) 5’ @))- /I (t) J (0 di 

corresponding to matrix (2.9) in the proof of Theorem 2.1, is established with the aid 

of the results in [3] (Sect. 20). 

4. In this section we consider an optimal observation problem in which it is also re- 

quired to ensure the fulfillment of inequality (1.3) under assumptions on the function 

h (t) , different from-Problem 1. The equations of motion and of observation have fornl 

(3.1). 

Problem 2. Let the observation time be finite but not fixed. The observations 

cease at the first instant T at which inequality (1.3) is fulfilled. It is required to deter- 

mine a piecewise-constant function in (t). taking two values (either zero or unity), mill- 

imizing the integral 7’ 

I II (I) dc (%.I) 

such that 
;I 

g’ D (7’, I),, I/) (7 q’ 1) (7’. I),,. I’) ‘/ s’ % (4.2) 

Here the equality h (t) -~ (1 signifies that observations are not made at the instant f (by 

virtue of the independence of the distribution of x (0) from the distributions of process 

E (t)). Everywhere in this section h (t) d enotes a function satisfying the constraints just 

formulated, while iv (4, a) denotes the set of all positive-definite matrices LA) such that 

q’ DC? > a* 
Theorem 4.1. Let there exist a nonnegative continuous function zr) (1)) of the 

matrix argument D,for which the total time derivative@ (I)).taken relative to Eqs. 

(3.2) with h (1) f 1. is piecewise continuous and, for some number t’ ( 0 satisfies the 

estimate 

Then Problem 2 is solvable under any initial condition L),,. 

Proof. Similarly to Sect. 2 we call the function h (t) au admissible observation if 

integral (4.1) is finite and inequality (4.2) is valid for this h (t). Further, analogously 

to the proof of Lemma 2.1, it is not difficult to establish that from the existence of an 

admissible observation, the existence of a function 71,, (1) ensues which solves the 

following problem. Find a function 71 (t) such that 0 < IL (t) < 1, minimizing integral 

(4. l), where inequality (4.2) is fulfilled for J> (t) - 71 (t). From this and from the max- 

imum principle it follows that for any 1 the function u,, (t) equals either zero or unity, 

i.e., II,, (t) is the optimal observation law also for Problem 2. 

We note further that on the basis of (2.4). (2.13), 

q’D (7’, I),,. 1) rl < $11 (T. 11”. /1) 4 

for any T and for observation h (t) . Thus, Problem 2 has a solution if 

q’D (T, D,, I) q < v. (4.3) 

for some 2’ It is clear that it is sufficient to establish estimate (4.3) only under the 

additional assumption U, z ,v (r[. a). 

Let us now assume that for all t ;:, 0 the variance 
1) (!. u,,, 1) 57: X(/J. a) 

Then for some finite s the function (1) (D (s. D,,, I)) ( !),which is impossible since 



it contradicts the requirement o (D) > 0. Theorem 4.1 is proved. 
Example 2. We consider the scalar Eqs. (3.1) of motion and observation. Let us 

find the conditions in terms of the coefficients of these equations under whose fulfillment 

Problem 2 is solvable. In this example the set N(q, a) is the halfline D > aq-2. Hence, 

from the positiveness of the variance D(t) for any finite 1 and from (1.4) it follows 

that we can take D(t) as the function W(D). Consequently, on the basis of Theorem 
4.1, Problem 2 for system (3.1) is solvable for a < ‘/2 H2aqq2. The latter condition for 

the solvability of Problem 2 can also be obtained directly from an analysis of Eqs. 1.4. 

Remark. Problem 2 for the system (1. l), (1.2) is solvable if all the eigenvalues 

of matrix A have negative real parts. This follows immediately from the formula 

q’D (T, D,, h)q < q’D (T, D,, O)q 

and from Eqs. (1.4), (2.4). However, as Example 2 shows, the stabiIity of matrix A is 
not a necessary condition for the solvability of Problem 2. Let us illustrate what we have 
said by a simple example. In Eq. (1.1) let matrix A be symmetric and matrix H non- 

singular. By h, we denote the largest eigenvalue of matrix A and by h, > 0 the smallest 
eigenvalue of the matrix V = H’ (~a’)-‘H. Further, with the aid of a nonsigular real 

transformation we reduce matrix ..I to diagonal form and matrix V to normal form. Then, 

using further the expressions (2.4) (2.13) we obtain that Problem 2 for system (1. l), 

(1.2) is solvable for 2nq’qh,, < a&. We note, finally, that if all the eigenvalues of matrix 

A are real and Problem 2 for system (1.1). (1.2) is solvable for ho(l), then, analogously 

to the proof of Fel’dbaum’s theorem (l-51, p.134). it is not difficult to establish with the 
aid of (1.4) that ho(t) has no more than n switching points. 
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